Retrieval from software libraries for bug localization: A
comparative study of generic and composite text models - A
Retrospective

Shivani Rao, LinkedIn
raoshivani@gmail.com

ABSTRACT

This retrospective on our 2011 MSR publication starts with the
research milieu that led to the work reported in our paper. We
briefly review the competing ideas of a decade ago that could be
applied to solving the problem of identifying the files in a software
library related to a query. We were especially interested in find-
ing out if the more complex text retrieval methods of that time
would be effective in the software context. A surprising conclu-
sion of our paper was that the reality was exactly the opposite:
the more traditional simpler methods outperformed the complex
methods. In addition to this surprising result, our paper was also
the first to report what was considered at that time a large-scale
quantitative evaluation of the IR-based approaches to automatic
bug localization. Over the years, such quantitative evaluations
have become the norm. We believe that these contributions were
largely responsible for the popularity of this paper in the research
literature.

1. INCEPTION

In 2008, Shivani Rao started her PhD at Purdue University and in
Fall of 2008 joined Avinash Kak’s Robot Vision Lab for her grad-
uate research. Her project was part of a larger research program
at Purdue that was funded by Infosys through its SETLabs (Soft-
ware Engineering & Technology). The Infosys SETlabs focused
on improving developer effectiveness with innovative tools. These
tools revolved around making sense of and managing the com-
plexity of large-scale software systems using tools such as model-
driven software development, software modularization, program
comprehension, and so on.

2. SETTING THE SCENE

During that time in the research community, there was increas-
ing interest in applying Data Mining and Machine Learning tech-
niques to solving problems in software engineering. In order to
bring these ideas together, a workshop called “Mining of Software
Repositories (MSR)” was organized in 2004 as a co-located venue
under the umbrella of ICSE that year. By 2008, the research in-
terest in the field had grown to an extent that the MSR workshop
had now turned into a regular conference in its own right. For
the most part, the approaches presented at the MSR venues had a
common theme: Treat source code as documents containing text
and apply machine learning and text understanding approaches to
solving software engineering problems that included duplicate bug
detection, bug localization, program comprehension, and others.

Our own research at that time focused on the problem of bug
localization, meaning identifying the files that would need to be
looked at in response to a bug report. The previous approaches
to bug localization could be broadly categorized as falling into
static and dynamic methods. Static bug localization techniques

Avinash Kak, Purdue University
kak@purdue.edu

operated by examining a file against a set of rules that predicted
if the code was buggy. On the other hand, dynamic bug local-
ization techniques relied on comparing the control flows for the
passing and the failing runs to identify the location of a bug. As
a large departure from that prior art, we started to investigate
the applicability of IR (Information Retrieval) based approaches
for solving the problem. We believed that such approaches would
allow the programmers to locate and fix the bugs faster. In IR
based approaches, the bugs are treated as queries and the source
code as a corpus of documents to be searched in response to a
query. With IR, the returned result is a ranked list of the files
relevant to a query in decreasing order of relevancy.

3. OUR OVERARCHING GOAL

Around the time we started exploring the application of IR to
bug localization, the literature generally entailed small query sets
(consisting of, say, 5-15 queries) and the conclusions in these
studies were mostly qualitative in nature. Additionally, different
researchers did their analyses on different repositories, or with
different models, making it difficult to carry out a side-by-side
comparison of the solutions presented. That led to the following
overarching goals for our research:

e To compare the state-of-art text models used in IR on the
same set of repositories;

e To carry out a large scale quantitative study with a stan-
dardized dataset so that other researchers could utilize the
same dataset for taking forward our work.

4. CONDUCT

Within the text understanding community, there was a lot of
buzz at that time about the LDA (Latent Dirichlet Allocation)
approach for representing documents. Compared to the other
models of that time period, LDA and its offshoots were the most
complex and they entailed a hidden layer of “topic” variables, with
each topic being represented as a probability distribution over the
words in the vocabulary of the corpus. We decided to compare
this model with four much simpler models for representing the
documents: Unigram, VSM (Vector Space model), LSA (Latent
Semantic Analysis) and CBDM (Cluster based Document Model).
We also created variants of these models to better understand
their relative strengths and weaknesses.

4.1 Collection and Analyzing the data

We used a benchmark dataset, iBugs, which, at that time, was
popular for studying static and dynamic bug localization tech-
niques.

Since iBugs had never been used previously for IR based bug local-
ization, our work included the data conditioning steps needed to



represent the source files and the bug reports as documents. These
data conditioning steps included eliminating common words from
the vocabulary that would not be discriminative (e.g. words such
as ‘for’, ‘while’, ‘with’, ‘each’, etc), splitting camel-cased and hy-
phenated words that are frequently used as variable names in
source code, eliminating unicode strings, and so on.

4.2 Metrics

We used the following metrics to compare the different algorithms:
MAP (Mean Average Precision) and SCORE (Rank of Retrieved
Files). By definition, MAP ranges between 0 and 1 and can be in-
terpreted as an average measure of the proportion of the returned
files relevant to a query. And, the SCORE@R tells us how many
bugs (or queries) would be correctly located if we only examined
the files returned up to rank R. So, SCOREQ@1 tells us how many
bugs would be correctly located if we just looked at the first source
file in the list returned by the algorithm.

4.3 Findings

In general, one expects the more complex models to handle more
difficult data conditions. At the time of our research, LDA was
new and a lot of academic researchers had jumped into the LDA
bandwagon. Going into our comparative evaluation, we had fully
expected the LDA modeling approach to significantly outperform
the other competing approaches. Just imagine our own surprise
when the results turned out to be exactly the opposite. The
conclusion of our evaluation was that the simplest of the mod-
els outperformed the more complex ones like LDA. What makes
this story even more interesting is that even the just moderately
complex text models like LSI and CBDM did not outperform the
simpler ones like VSM or Unigram.

S. FURTHER WORK

Our work laid the foundations for several other contributions that
subsequently emerged from our lab. One such early contribution
was our collaboration with Emily Hill that was devoted to study-
ing the effectiveness of the different stemming algorithms in the
software context [Hill et al. 2012]. We also investigated incremen-
tal update frameworks for IR based bug localization, the goal here
being to make incremental updates to the model so that it could
evolve with changes to the repository. We analyzed the different
popular models for their incremental update versions. This work
was done in collaboration with Henry Medeiros ([Rao et al. 2013],
[Rao et al. 2015]).

6. IMPACT

To assess the impact of our work on the broader research commu-
nity, we reviewed the literature that has cited our paper, focusing
especially on those publications that have been cited more than
50 times. The articles we reviewed were published in a wide range
of high-impact venues such as MSR, IEEE TSE, ICSE, ASE, and
others. While some of these articles surveyed the latest state-of-
the-art in IR based approaches ([Wong et al. 2016], [Chen et al.
2015], [Zhang et al. 2015], [Hemmati et al. 2013]), with regard
to the others, broadly speaking, those fell in two distinct cate-
gories: those that proposed new improvements to the IR based
bug localization techniques, and those that either further affirmed
our own conclusions or applied the IR-based tools to other prob-
lems/domains. Here are some examples of the papers in the first
category:

e In ([Zhou et al. 2012], [Saha et al. 2013], [Wang and Lo 2014],
[Wong et al. 2014], [Wang and Lo 2014], [Sisman and Kak

2012], [Sisman and Kak 2013], [Sisman et al. 2017]) the au-
thors have proposed approaches that are unsupervised and
improve the retrieval accuracy by augmenting the document
representation or the query representation with additional
sources of information.

e In ([Ye et al. 2014], [Kim et al. 2013]), the authors have
proposed supervised approaches for retrieval (Learning to
Rank, SVMs etc) that partitioned the data into training and
testing sets and, subsequently, trained either a classification
or a regression model to improve the retrieval accuracy.

e In contrast with the papers cited above that focus on de-
veloping supervised and unsupervised methods, the authors
of ([Le et al. 2015], [Le et al. 2016]) have proposed novel
integrated methods that combine IR based algorithms with
those based on dynamic bug localization.

e More recently, the authors of ([Ye et al. 2016], [Lam et al.
2017], [Akbar and Kak 2019]) have demonstrated how word
embeddings produced by deep-learning based algorithms like
word2vec can be used to improve retrieval accuracy.

And here are the more prominent papers in the second category:

e [Wang et al. 2011] replicated our work in a different appli-
cation and came to the same overall conclusions as ours.
They concluded that it was not only the vanilla LDA mod-
els that failed to outperform the much simpler VSM, even
the more sophisticated version of LDA, like the Hierarchi-
cal LDA, and the non-negative matrix factorization method
could not beat VSM.

e About using IR based search tools for solving other problems
in Software Engineering, [Saha et al. 2015] proposed using
such tools for regression testing; [Thung et al. 2013] showed
how such tools can be used to recommend API methods in
response to feature requests; [Wen et al. 2016], [Yang et al.
2014], and [Zhang et al. 2016] suggested using tools for bug
triaging that involves finding the right developer for fixing
a bug and assigning a severity level to the bug.

e The rest of the papers we reviewed in this category in-
clude those that have investigated improvements to the topic
models for improving retrieval accuracy ([Chen et al. 2015],
[Agrawal et al. 2018] , [Biggers et al. 2014]) and a paper that
has questioned the use of IR-based tools for bug localization
[Wang et al. 2015].

7. CONCLUSIONS

This retrospective provides a context for the work that was re-
ported in our paper, highlighting the popularity of certain IR al-
gorithms of that era. The buzz associated with those algorithms
was our primary motivation for investigating their effectiveness in
the software context. As it turned out, our work demonstrated
that the actual performance of those algorithms was inversely
proportional to their complexity; a finding that was later corrob-
orated by other researchers. Additionally, our paper set the norm
of performing large-scale quantitative evaluation of the IR-based
approaches to automatic bug localization. These were the rea-
sons for the popularity of our paper and its high citation count.
In this retrospective, we have also surveyed some of the more
notable contributions that followed ours and that have cited out
work.



8. REFERENCES

[Agrawal et al. 2018] Amritanshu Agrawal, Wei Fu, and Tim
Menzies. 2018. What is Wrong with Topic Modeling? And
How to Fix it Using Search-based Software Engineering.
Information and Software Technology 98 (2018), 74-88.

[Akbar and Kak 2019] S. Akbar and A. Kak. 2019. SCOR:
Source Code Retrieval with Semantics and Order. In 2019
IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). 1-12.

[Biggers et al. 2014] Lauren R Biggers, Cecylia Bocovich, Riley
Capshaw, Brian P Eddy, Letha H Etzkorn, and Nicholas A
Kraft. 2014. Configuring Latent Dirichlet Allocation Based
Feature Location. Empirical Software Engineering 19, 3
(2014), 465-500.

[Chen et al. 2015] Tse-Hsun Chen, Stephen Thomas, and
Ahmed E. Hassan. 2015. A Survey on the use of Topic
Models when Mining Software Repositories. 21 (2015).

[Hemmati et al. 2013] H. Hemmati, S. Nadi, O. Baysal, O.
Kononenko, W. Wang, R. Holmes, and M. W. Godfrey.
2013. The MSR Cookbook: Mining a Aecade of Research.
In 2018 10th Working Conference on Mining Software
Repositories (MSR). 343-352.

[Hill et al. 2012] E. Hill, S. Rao, and A. Kak. 2012. On the Use
of Stemming for Concern Location and Bug Localization in
Java. In 2012 IEEFE 12th International Working Conference
on Source Code Analysis and Manipulation. 184—193.

[Kim et al. 2013] D. Kim, Y. Tao, S. Kim, and A. Zeller. 2013.
Where Should We Fix This Bug? A Two-Phase
Recommendation Model. IEEE Transactions on Software
Engineering 39, 11 (2013), 1597-1610.

[Lam et al. 2017] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and
T. N. Nguyen. 2017. Bug Localization with Combination of
Deep Learning and Information Retrieval. In 2017
IEEE/ACM 25th International Conference on Program
Comprehension (ICPC). 218-229.

[Le et al. 2016] Tien-Duy B. Le, David Lo, Claire Le Goues, and
Lars Grunske. 2016. A Learning-to-Rank Based Fault
Localization Approach Using Likely Invariants. In
Proceedings of the 25th International Symposium on
Software Testing and Analysis (Saarbriicken, Germany)
(ISSTA 2016). Association for Computing Machinery, New
York, NY, USA, 177-188.

[Le et al. 2015] Tien-Duy B. Le, Richard J. Oentaryo, and David
Lo. 2015. Information Retrieval and Spectrum Based Bug
Localization: Better Together. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy) (ESEC/FSE 2015). Association for
Computing Machinery, New York, NY, USA, 579-590.

[Rao et al. 2013] S. Rao, H. Medeiros, and A. Kak. 2013. An
Incremental Update Framework for Efficient Retrieval from
Software Libraries for Bug Localization. In 2013 20th
Working Conference on Reverse Engineering (WCRE).
62-71.

[Rao et al. 2015] Shivani Rao, Henry Medeiros, and Avinash
Kak. 2015. Comparing Incremental Latent Semantic
Analysis Algorithms for Efficient Retrieval from Software
Libraries for Bug Localization. SIGSOFT Softw. Eng. Notes
40, 1 (Feb. 2015), 1-8.

[Saha et al. 2013] R. K. Saha, M. Lease, S. Khurshid, and D. E.
Perry. 2013. Improving Bug Localization Using Structured
Information Retrieval. In 2013 28th IEEE/ACM
International Conference on Automated Software
Engineering (ASE). 345-355.

[Saha et al. 2015] R. K. Saha, L. Zhang, S. Khurshid, and D. E.

Perry. 2015. An Information Retrieval Approach for
Regression Test Prioritization Based on Program Changes.
In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. 268-279.

[Sisman et al. 2017] Bunyamin Sisman, Shayan A. Akbar, and
Avinash C. Kak. 2017. Exploiting Spatial Code Proximity
and Order for Improved Source Code Retrieval for Bug
Localization. Journal of Software: Fvolution and Process
29, 1 (2017), e1805. 1805 JSME-16-0104.R1.

[Sisman and Kak 2012] B. Sisman and A. C. Kak. 2012.
Incorporating Version Histories in Information Retrieval
Based Bug Localization. In 2012 9th IEEE Working
Conference on Mining Software Repositories (MSR). 50-59.

[Sisman and Kak 2013] B. Sisman and A. C. Kak. 2013.
Assisting Code Search with Automatic Query
Reformulation for Bug Localization. In 2013 10th Working
Conference on Mining Software Repositories (MSR).
309-318.

[Thung et al. 2013] F. Thung, S. Wang, D. Lo, and J. Lawall.
2013. Automatic Recommendation of API Methods from
Feature Requests. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE).
290-300.

[Wang et al. 2015] Qiangian Wang, Chris Parnin, and
Alessandro Orso. 2015. Evaluating the Usefulness of
IR-Based Fault Localization Techniques (ISSTA 2015).
Association for Computing Machinery, New York, NY,
USA, 1-11.

[Wang and Lo 2014] Shaowei Wang and David Lo. 2014. Version
History, Similar Report, and Structure: Putting Them
Together for Improved Bug Localization. In Proceedings of
the 22nd International Conference on Program
Comprehension (Hyderabad, India) (ICPC 2014).
Association for Computing Machinery, New York, NY,
USA, 53-63.

[Wang et al. 2011] S. Wang, D. Lo, Z. Xing, and L. Jiang. 2011.
Concern Localization using Information Retrieval: An
Empirical Study on Linux Kernel. In 2011 18th Working
Conference on Reverse Engineering. 92—96.

[Wen et al. 2016] M. Wen, R. Wu, and S. Cheung. 2016. Locus:
Locating Bugs from Software Changes. In 2016 31st
IEEE/ACM International Conference on Automated
Software Engineering (ASE). 262-273.

[Wong et al. 2014] C. Wong, Y. Xiong, H. Zhang, D. Hao, L.
Zhang, and H. Mei. 2014. Boosting Bug-Report-Oriented
Fault Localization with Segmentation and Stack-Trace
Analysis. In 2014 IEEE International Conference on
Software Maintenance and Evolution. 181-190.

[Wong et al. 2016] W. E. Wong, R. Gao, Y. Li, R. Abreu, and
F. Wotawa. 2016. A Survey on Software Fault Localization.
IEEE Transactions on Software Engineering 42, 8 (2016),
707-740.

[Yang et al. 2014] G. Yang, T. Zhang, and B. Lee. 2014.
Towards Semi-automatic Bug Triage and Severity
Prediction Based on Topic Model and Multi-feature of Bug
Reports. In 2014 IEEE 38th Annual Computer Software
and Applications Conference. 97-106.

[Ye et al. 2014] Xin Ye, Razvan Bunescu, and Chang Liu. 2014.
Learning to Rank Relevant Files for Bug Reports Using
Domain Knowledge. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (Hong Kong, China) (FSE 2014).
Association for Computing Machinery, New York, NY,
USA, 689-699.



[Ye et al. 2016] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu,
and Chang Liu. 2016. From Word Embeddings to
Document Similarities for Improved Information Retrieval
in Software Engineering (ICSE ’16). Association for
Computing Machinery, New York, NY, USA, 404-415.

[Zhang et al. 2015] Jie Zhang, Xiaoyin Wang, Dan Hao, Bing
Xie, Lu Zhang, and Hong Mei. 2015. A Survey on
Bug-Report Analysis. Science China Information Sciences
58, 2 (2015), 1-24.

[Zhang et al. 2016] Tao Zhang, Jiachi Chen, Geunseok Yang,
Byungjeong Lee, and Xiapu Luo. 2016. Towards More
Accurate Severity Prediction and Fixer Recommendation of
Software Bugs. Journal of Systems and Software 117
(2016), 166-184.

[Zhou et al. 2012] J. Zhou, H. Zhang, and D. Lo. 2012. Where
Should the Bugs be Fixed? More Accurate Information
Retrieval-based Bug Localization based on bug reports. In
2012 34th International Conference on Software
Engineering (ICSE). 14-24.



